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Abstract

In this dissertation, we investigate the Erdös-Szemerédi Conjecture
and its relationship with several well-known results in incidence geom-
etry, such as the Szemerédi-Trotter Incidence Theorem. We first study
these problems in the setting of real numbers and focus on the proofs
by Elekes and Solymosi about sum-product estimates. After introducing
these theorems, our main focus is the Erdös-Szemerédi Conjecture in the
setting of Fp. We aim to adapt several ingenious techniques developed
for real numbers to the case of Fp. Finally, we obtain a result about the
estimate of the number of bisectors over the ring Z/p3Z with p a Gaussian
prime.

1 Introduction

1.1 General settings

We first introduce the sum set and product set as follows:

Definition 1.1.1 (sum set, product set). Given a ring (R,+, ·) and two non-
empty finite subsets A,B ⊆ R, define their sum set

A+B := {a+ b | a ∈ A, b ∈ B}

and their product set

A ·B := {a · b | a ∈ A, b ∈ B}.

It is obvious that the sizes of the sum set A+B and the product set A·B share
the same trivial upper bound |A||B| and trivial lower bound max{|A|, |B|} if
both A and B contain at least one non-zero-divisor where we use |A| to denote
the size of the set A. However, if there exists no finite subring, one expects
that the sizes of the sum set or product set are much larger than the trivial
lower bound. This motivated Erdös and Szemerédi to make their well-known
conjecture in the 1980s. Before we go into more details, we first recall the useful
Landau notation and Vinogradov notation defined as follows:
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Definition 1.1.2 (asymptotic notations). Throughout this article, all the quan-
tities are nonnegative. The Landau notation and Vinogradov notation are de-
fined as follows:

1. We say f = O(g), or equivalently f ≪ g, if lim
x→∞

f(x)
g(x) < ∞.

2. We say f = o(g) if lim
x→∞

f(x)
g(x) = 0.

3. We say f = Ω(g), or equivalently f ≫ g, if lim
x→∞

g(x)
f(x) < ∞.

4. We say f = ω(g) if lim
x→∞

g(x)
f(x) = 0.

5. We say f = Θ(g) if lim
x→∞

f(x)
g(x) ∈ (0,∞).

6. We say f ∼ g if lim
x→∞

f(x)
g(x) = 1.

7. We say f ≲ g if there is an absolute c ∈ R such that f(x) ≪ g(x) logc(x).

8. We say f ≈ g if f ≲ g and g ≲ f .

1.2 Erdös-Szemerédi Conjecture

Before we state the Erdös-Szemerédi Conjecture, let us first take a look at the
following examples:

Example 1.2.1. Let R = R.

1. Consider A = B = {1, 2, . . . , n}, an arithmetic progression of length n.
Then, one can direct compute to see

|A+B| = |{2, 3, . . . , 2n}| = Θ(|A|),

which achieves the lower bound. However, the size of its product set

|A ·B| ≈ |A|2,

which achieves the upper bound. (This result is known as Erdös Multi-
plicative Table Problem and proved by Erdös.)

2. On the other hand, consider A = B = {21, . . . , 2n}, a geometric progres-
sion. We have

|A+B| ≈ |A|2,

which achieves the upper bound and its product set

|A ·B| = Θ(|A|),

which achieves the lower bound.
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Based on the above examples, we can see that there are sets whose either
sum-set or product-set almost achieves the upper bound. The well-known con-
jecture of Erdös and Szemerédi states that not only arithmetic progressions or
geometric progressions can have either sum-set or product-set almost attain the
upper bound but for any finite sets. More precisely, they made the conjecture
below.

Conjecture 1.2.2 (Erdös-Szemerédi Conjecture, [6]). For any finite subset
A ⊆ Z, one has

max{|A+A|, |A ·A|} ≫δ |A|2−δ

for any constant δ > 0.

In order to support their conjecture, they proved the following theorem.

Theorem 1.2.3 (Theorem 1, [6]). Given any finite subset A ⊆ Z, we have

|A|1+ϵ1 ≪ max{|A+A|, |A ·A|} ≪ |A|2 exp (−ϵ2 log |A| log log |A|)

for some absolute constants ϵ1, ϵ2 > 0.

Their theorem stimulated many subsequent works that either improved the
exponents or generalized it to other settings such as Fp. The conjecture is also
widely believed to be true in integers, real numbers, complex numbers, fields,
and even arbitrary rings [16]. This conjecture motivates numerous priceless
research in various areas and has been extremely important in various research
areas. After decades, the conjecture has been connected to other areas, such as
Incidence Geometry [3], Harmonic Analysis [11], Number Theory, etc.

2 Milestones in Real Number

In this section, we discuss the Sum-Product Phenomenon in real numbers. Re-
call that the Erdös-Szemerédi Conjecture in real number is:

For any finite subset A ⊆ R, one has max{|A+A|, |A ·A|} ≫δ |A|2−δ

for any δ > 0.

The conjecture is still open, and there have been several important results
that are shown in the following table on the next page:
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Authors Exponential Part

Erdös and Szemerédi (1983, [6]) 1 + ϵ for some ϵ > 0

Elekes (1997, [5]) 1 + 1
4

Solymosi (2009, [12]) 1 + 1
3 − δ for any δ > 0

Rudnev and Stevens (2020, [10]) 1 + 1
3 + 2

1167 − δ for any δ > 0

Let us first introduce the beautiful results of Elekes and Solymosi, which are
the two most crucial results overall. To start with, we introduce an important
notation in Incidence Geometry: Given a set of points P ∈ R2 and a collection
L of lines in R2, define their incidence number

I(P,L) := |{(p, l) ∈ P × L | p ∈ l}| .

2.1 Elekes’ result

We first recall the Szemerédi-Trotter Incidence Theorem, an extremely impor-
tant theorem in Incidence Geometry (Its proof will be provided in the Appendix
A. for the sake of self-containment).

Theorem 2.1.1 (Szemerédi-Trotter Incidence Theorem, [15]). On Euclidean
plane R2, given a point set P and a line set L, then the number of their inci-
dences

I(P,L) = O
(
|P|

2
3 |L|

2
3 + |P|+ |L|

)
.

It is important to remark that the result is sharp, meaning there exists a
configuration of points P and lines L whose incidence is ∼ |P |2/3|L|2/3. In
1997, Elekes brilliantly applied the result of Szemerédi-Trotter Theorem to the
Sum-Product problem and obtained the following theorem:

Theorem 2.1.2 (Elekes, [5]). Given any finite subset A ⊆ R,

max{|A+A|, |A ·A|} ≫ |A|1+
1
4 .

Proof. Consider the point set P = (A+A)× (A ·A) and the line set

L = {l | l : y = a1(x− a2), a1, a2 ∈ A}.

For any lines l : y = a(x− a′) ∈ L and a′′ ∈ A, (a′ + a′′, aa′′) ∈ P, so for every
line in L, there are at least |A| points in P lie on it. In other words, by Theorem
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2.1.1, we have

|A|3 = |A||L| ≤ I(P,L) ≪ |A+A|
2
3 |A ·A|

2
3 |A|

4
3 + |A+A||A ·A|+ |A|2

⇒ |A|3 ≪ max
{
|A+A|

2
3 |A ·A|

2
3 |A|

4
3 , |A+A||A ·A|

}
⇒ |A|

5
3 ≪ |A+A|

2
3 |A ·A|

2
3

⇒ |A|
5
4 ≪ |A+A|

1
2 |A ·A|

1
2 ≤ max{|A+A|, |A ·A|}.

This completes the proof.

2.2 Solymosi’s result

To demonstrate Solymosi’s result, we need the following definition:

Definition 2.2.1 (additive energy, multiplicative energy). Given two sets A,B,
their additive energy is defined as

E+(A,B) := |{(a1, a2, b1, b2) ∈ A×A×B ×B | a1 + b1 = a2 + b2}| (1)

and their multiplicative energy is defined as

E×(A,B) := |{(a1, a2, b1, b2) ∈ A×A×B ×B | a1b1 = a2b2}|.

Especially, if A = B, define E+(A) := E+(A,A) and E×(A) := E×(A,A).

Note that the additive energy (resp. multiplicative energy) indicates how
many redundant additive pairs (resp. multiplicative pairs) the sets have. In
other words, a set with large additive energy (resp. multiplicative energy) will
have a small sum set (resp. product set). This makes these energy estimates
useful for estimating sum and product sets. To be more specific, define

rA+A(z) := |{(a1, a2) ∈ A×A | z = a1 + a2}|.

Then, by Cauchy-Schwarz inequality, we can see that

|A|4 =

( ∑
z∈A+A

rA+A(z)

)2

≤ |A+A|
∑

z∈A+A

rA+A(z)
2
= |A+A|E+(A). (2)

Therefore, we can obtain a lower bound of the sum set by an upper bound of
additive energy.

Theorem 2.2.2 (Solymosi, [12]). Given any finite subset A ⊆ R,

max{|A+A|, |A ·A|} ≫ |A|1+
1
3 .

Proof. Without loss of generality, we may assume that every element in A is
positive. Let

rA/A(x) := {(a1, a2) ∈ A×A | x = a1/a2}, xA := {xa | a ∈ A}
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for any element x and

A/A := {a/a′ | a, a′ ∈ A}.
First, we have

E×(A) =
∑

x∈A/A

rA/A(x)
2
=

∑
x∈A/A

|xA ∩A|2

=

⌈log2 |A|⌉∑
i=1

∑
x:2i−1≤|xA∩A|<2i

|xA ∩A|2.

Then, by the pigeonhole principle, there is an index 1 ≤ i0 ≤ ⌈log2 |A|⌉ such
that

E×(A)

⌈log2 |A|⌉
≤

∑
x:2i0−1≤|xA∩A|<2i0

|xA ∩A|2. (3)

Let D := {x | 2i0−1 ≤ |xA ∩ A| < 2i0} = {s1, . . . , sn} with |D| = n and
s1 < · · · < sn. Set the line li : y = six for i = 1, . . . , n and ln+1 : x = a1 where
a1 is the smallest element in A. For i = 1, . . . , n, consider the point sets

Pi :=
(
li ∩ (A×A)

)
+
(
li+1 ∩ (A×A)

)
and P :=

n⊔
i=1

Pi ⊆ (A×A) + (A×A)

where the addition symbol means vector addition and A×Ameans the Cartesian
product.

Next, since |li ∩ (A×A)| ≥ 2i0−1,

|P | =
n∑

i=1

|Pi| ≥ n2i0 .

On the other hand,

|P | ≤ |(A+A)× (A+A)| = |A+A|2 ⇒ n2i0 ≤ |A+A|2.
Together with Equation (3), we get

E×(A)

⌈log2 |A|⌉
≤ n2i0 ≤ |A+A|2.

Combining it with the multiplicative version of Equation (2), we get

|A|4

|A ·A|⌈log2 |A|⌉
≤ E×(A)

⌈log2 |A|⌉
≤ |A+A|2.

Hence,

|A|
4
3

⌈log2 |A|⌉
1
3

≤ |A+A|
2
3 |A ·A|

1
3 ≤ max{|A+A|, |A ·A|},

which completes this proof.

Note that in the above proof, we use the pigeonhole principle to choose a
proper index i0 satisfying Equation (3). This skill, called the “dyadic argument,”
is widely used in the proofs of many results of the Sum-Product Phenomena [17].
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3 Connection between Incidence Geometry and
Sum-Product Phenomena in Fp

In this section, we will display several useful Incidence Geometry results in Fp

and especially focus on those that have strong connections with Sum-Product
estimates. In fact, the known result by Bourgain, Katz, and Tao has established
the first non-trivial bound for the point-line incidences in the setting of Fp,
which was an application of their sum-product estimate. However, there have
been many improvements since then, which we state below.

3.1 Szemerédi-Trotter type theorem

We start with a familiar example that we mentioned in Section 2.1. In the
proof of Theorem 2.1.2, the most important lemma is Theorem 2.1.1 (Szemerédi-
Trotter Theorem). Therefore, obtaining Szemerédi-Trotter type theorem in Fp,
where p is a prime, can also provide a non-trivial bound for Erdös-Szemerédi
Conjecture. Sophie Stevens and Frank De Zeeuw obtain an explicit result as
follows [13]. (Proof of the following theorem will be provided in Appendix for
the sake of self-containment.)

Theorem 3.1.1 (Szemerédi-Trotter type Theorem in Fp, [13]). On F2
p where p

is a prime, given a point set P = A×B and a line set L with

|A| ≤ |B|, |A||B|2 ≤ |L|3, and |A||L| ≪ p2

then the number of their incidences

I(A×B,L) = O
(
|A|

3
4 |B|

1
2 |L|

3
4 + |L|

)
.

With this theorem, we can deduce the following theorem via an argument
similar to the proof of Theorem 2.1.2.

Corollary 3.1.2 (Corollary 9, [13]). Given any subset A ⊆ Fp with |A| ≪ p
2
3 ,

max{|A+A|, |A ·A|} ≫ |A|1+
1
5 .

Proof. For a subset A, divide it into two cases:

1. If |A+A| ≤ |A ·A|, then set

L := {l : y = a(x− a′) | a, a′ ∈ A}, A′ = A+A, and B′ = A ·A.

We will find that A′, B′, and L satisfy the assumption of Theorem 3.1.1.
Additionally, for any line l : y = a(x− a′) in L and a′′ ∈ A,

(a′ + a′′, aa′′) ∈ (A′ ×B′) ∩ l.
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In other words, by Theorem 3.1.1,

|A|3 = |A||L| ≤ I(A′ ×B′,L) ≪ |A+A|
3
4 |A ·A|

1
2 |A|

3
2 + |A|2

⇒ |A|6 ≪ |A+A|3|A ·A|2

⇒ |A|1+
1
5 ≪ max{|A+A|, |A ·A|}.

2. On the other hand, if |A+A| > |A ·A|, then set

L := {l : a(y − a′) = x | a, a′ ∈ A}, A′ = A ·A, and B′ = A+A.

We can see that L, A′, B′ satisfy the assumptions of Theorem 3.1.1. More-
over, for any line l : a(y − a′) = x in L and a′′ ∈ A,

(aa′′, a′ + a′′) ∈ (A′ ×B′) ∩ l.

That is,

|A|3 = |A||L| ≤ I(A′ ×B′,L) ≪ |A ·A|
3
4 |A+A|

1
2 |A|

3
2 + |A|2

⇒ |A|6 ≪ |A ·A|3|A+A|2

⇒ |A|1+
1
5 ≪ max{|A+A|, |A ·A|}.

To sum up, in both cases, our statement holds.

Corollary 3.1.3. In the above proof, we can see that

|A|6 ≪ min{|A+A|3|A ·A|2, |A ·A|3|A+A|2}.

Thus, in the extremal cases, we have the following bounds:

1. If |A+A| = Θ(|A|), then |A ·A| ≫ |A ·A|1+
1
2 .

2. If |A ·A| = Θ(|A|), then |A+A| ≫ |A+A|1+
1
2 .

3.2 Estimation of a special kind of energy

In this part, we will focus on the estimation of a special kind of energy, which
is first considered in [8]. After the estimation, we will see that this energy will
provide another brilliant bound for Erdös-Szemerédi Conjecture.

Definition 3.2.1 (variant-slope set, rQ, restricted variant-slope energy). Let
Z,A1, A2 be subsets of Fp. Define variant-slope set

Q := (A1 +A2)/(A1 +A2) =

{
a1 + a2
a′1 + a′2

∣∣∣∣ a1, a′1 ∈ A1, a2, a
′
2 ∈ A2

}
,

a function

rQ(z) :=

{
(a1, a

′
1, a2, a

′
2) ∈ A1 ×A1 ×A2 ×A2

∣∣∣∣ z =
a1 + a2
a′1 + a′2

}
,
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and the restricted variant-slope energy

R(Z,A1, A2) :=
∑
z∈Z

rQ(z)
2

= the number of solutions to “z =
a1,1 + a2,1
a1,2 + a2,2

=
a1,3 + a2,3
a1,4 + a2,4

”

where z ∈ Z, ai,j ∈ Ai for all i = 1, 2, j = 1, 2, 3, 4.

Note that subtractive energy, defined as

E−(A) := {a1, a2, a3, a4 ∈ A×A×A×A | a1 − a2 = a3 − a4},

is as same as additive energy, so a subtraction acts similar way as an addition
from the perspective of energy. Also, notice that the collection of slopes of lines
passing both A1 ×A1 and A2 ×A2 is

A1 −A2

A1 −A2
=

{
a1 − a2
a′1 − a′2

∣∣∣∣ a1, a′1 ∈ A1, a2, a
′
2 ∈ A2

}
,

which is a dual version of Q = (A1 + A2)/(A1 + A2). In other words, Q is
the collection of variant slopes from the energy’s point of view. Additionally,
compared to Equation (1), when we take Z = (A1 −A2)/(A1 −A2) or Z = Fp,
the definition of R(Z,A1, A2) is in the energy form. For general Z, since the
value of variant-slope is restricted in Z, we call R(Z,A1, A2) restricted variant-
slope energy, and it gives us a non-trivial bound for Erdös-Szemerédi Conjecture
in Fp.

First, without loss of generality, assume |A1| ≤ |A2|. Then, there is a trivial
upper bound

R(Z,A1, A2) ≤ R(Fp, A1, A2) ≤ |A1|4|A2|3.
Next, we want to improve the upper bound of R(Z,A1, A2). Boqing Xue

(2021, [18]) solved a similar case in the real number for this question. Following
the pace of Xue, Dung (2022, [4]) proved the following two upper bounds in Fp:

Lemma 3.2.2 ([4]). Let Z,A1, A2 ⊆ Fp with |A1| ≤ |A2|, |Z| ≤ |A1|2, and

|A1|3 ≪ p2. Then, ∑
z∈Z

rQ(z) ≲ |Z|
1
2 |A1|

33
16 |A2|

5
4 . (4)

Additionally, we have

R(Z,A1, A2) ≲ |A1|
33
8 |A2|

5
2 . (5)

Proof. To prove this claim, note that∑
z∈Z

rQ(z)

=
∑
z∈Z

∑
y∈Fp

|{(a1, a′1, a2, a′2) | a1 − a′1z = a′2z − a2 = y, ai, a
′
i ∈ Ai}|

=
∑

(z,y)∈P

r1(z, y)r2(z, y)

(6)
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where
P := {(z, y) | z ∈ Z, y ∈ (A1 − zA1) ∩ (A2 − zA2)},

r1(z, y) := |{(a, a′) ∈ A1 ×A1 | a− a′z = y}| ,

and
r2(z, y) := |{(a, a′) ∈ A2 ×A2 | a′z − a = y}| .

Next, we split the summation in Equation (6) into four parts S1,1, S2,1, S2,2,
and S1,2 with

Sj1,j2 :=
∑

(z,y)∈P
r1(z,y)∈Ij1
r2(z,y)∈Ij2

r1(z, y)r2(z, y)

where j1, j2 ∈ {1, 2} and I1 = {1}, I2 = {2, 3, . . . }. Now, we will bound
S1,1, S2,1, S2,2, and S1,2, separately:

1. For S1,1, we know that

S1,1 ≤ |P| ≤ |Z||A1|2. (7)

2. For S2,1, we obtain

S2,1 ≤
∑

(z,y)∈P

r1(z, y) ≤ |{(z, y, a1, a′1) ∈ Z × Fp | a1 − a′1z = y}|

= |Z||A1|2.
(8)

3. For S2,2, applying Hölder inequality several times, we see that

S2,2 =
∑

(z,y)∈P
r1(z,y),r2(z,y)≥2

r1(z, y)r2(z, y)

≤

 ∑
(z,y)∈P

r1(z,y),r2(z,y)≥2

r1(z, y)
4
3


3
4
 ∑

(z,y)∈P
r2(z,y)≥2

r2(z, y)
4


1
4

≤

 ∑
(z,y)∈P

r1(z, y)

 1
2
 ∑

(z,y)∈P

r1(z, y)
2

 1
4
 ∑

(z,y)∈P

r2(z, y)
4

 1
4

(9)

Next, we separately estimate these three parts:

(a) For the first part, we have∑
(z,y)∈P

r1(z, y) ≤ |Z||A1|2. (10)
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(b) Secondly, for a ∈ A1, we define

r1,a(z) := |{(a1, a′1, a′′1) ∈ A×A×A | a′′1 − a′1 = z(a1 − a)}| .

Then, ∑
y∈Fp

r1(z, y)
2
=
∑
a∈A1

r1,a(z).

According to the relation between |A1| and |Z|, divide it into two
cases:

i. Assume |A1| ≤ |Z|:
For a fixed a ∈ A1, let La be the collection of lines of the form
l : a′1−x = y(a−a1) where (a1, a

′
1) ∈ A1×A1. Set A := A1, B :=

Z,L := La and notice that A,B,La satisfy the assumptions of
Theorem 3.1.1. Thus,∑

(z,y)∈P

r1(z, y)
2
=
∑
z∈Z

∑
a∈A1

r1,a(z) ≤
∑
a∈A1

I(A1 × Z,La)

≪
∑
a∈A1

|A1|
3
4 |Z|

1
2 |A1|

3
2 + |A1|2

≪ |Z|
1
2 |A1|

13
4 .

(11)

ii. On the other hand, assume |A1| ≥ |Z|:
The proving technique is similar to the above. But this time,
define La as the family of lines in the form l : a′1 − y = x(a1 − a)
where a1, a

′
1 ∈ A1 and set A := Z,B := A1,L := La. Applying

Theorem 3.1.1, we obtain∑
(z,y)∈P

r1(z, y)
2 ≤

∑
z∈Z

∑
a∈A1

r1,a(z) ≤
∑
a∈A1

I(Z ×A1,La)

≪
∑
a∈A1

|Z|
3
4 |A1|

1
2 |A1|

3
2 + |A1|2

≪ |Z|
3
4 |A1|3 ≤ |Z|

1
2 |A1|

13
4 .

(12)

Hence, by Equation (11) and (12), we have∑
(z,y)∈P

r1(z, y)
2 ≪ |Z|

1
2 |A1|

13
4 . (13)

(c) As for the last part, let L = {lz0,y0 : y = z0x+ y1 | (z0, y0) ∈ P}. For
2 ≤ k ≤ |Ai|, let Li,k be the set of lines in L which contains at least
k points in Ai ×Ai. Using Theorem 3.1.1, we obtain

k|Li,k| ≤ I(Ai ×Ai,L) ≪ |Ai|
3
4 |Ai|

1
2 |Li,k|

3
4 + |Li,k|

⇒ |Li,k| ≪
|Ai|5

k4
.
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Thus, by the above estimate, we get∑
(z,y)∈P
r2(z,y)≥2

r2(z, y)
4
=

∑
2≤k≤|A2|

k4 |{(z, y) ∈ P | r2(z, y) = k}|

≪
∑

2≤k≤|A2|

k3|L2,k| ≪
∑

2≤k≤|A2|

k−1|A2|5

≲ |A2|5.

(14)

Combining Equation (9), (10),(13), and (14), we know that

S2,2 ≲
(
|Z||A1|2

) 1
2
(
|Z|

1
2 |A1|

13
4

) 1
4
(
|A2|5

) 1
4

= |Z|
5
8 |A1|

29
16 |A2|

5
4 . (15)

4. For S1,2, applying Cauchy-Schwarz inequality twice and Equation (14),
we get

S1,2 ≤
∑

(z,y)∈P
r2(z,y)≥2

r2(z, y) ≤ |P|
1
2

 ∑
(z,y)∈P
r2(z,y)≥2

r2(z, y)
2


1
2

≤ |P|
3
4

 ∑
(z,y)∈P
r2(z,y)≥2

r2(z, y)
4


1
4

≲ |Z|
3
4 |A1|

3
2 |A2|

5
4 .

(16)

By the estimate of Equation (7), (8), (15), and (16), we get∑
z∈Z

rQ(z) = S1,1 + S1,2 + S2,1 + S2,2

≲ |Z||A1|2 + |Z||A1|2 + |Z|
5
8 |A1|

29
16 |A2|

5
4 + |Z|

3
4 |A1|

3
2 |A2|

5
4

≲ |Z|
5
8 |A1|

29
16 |A2|

5
4 ≲ |Z|

1
2 |A1|

33
16 |A2|

5
4

(17)

This completes the proof of Equation (4).
Next, to prove Equation (5), define

Zt := {z ∈ Z | rQ(z) ≥ t} for any t ≥ 1.

Note that
|Zt| ≤ |Z| ≤ |A1|2.

Replacing Z with Zt and applying (17), we have

t|Zt| ≤
∑
z∈Zt

rQ(z) ≪ |Zt|
1
2 |A1|

33
16 |A2|

5
4 .
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That is,

|Zt| ≪
|A1|

33
8 |A2|

5
2

t2
.

As a result,

R(Z,A1, A2) =
∑
z∈Z

rQ(z)
2
=

∑
t≤|A1|2|A2|

t2|{z | rQ(z) = t}|

≪
∑

t≤|A1|2|A2|

t|Zt| ≪
∑

t≤|A1|2|A2|

t−1|A1|
33
8 |A2|

5
4

≲ |A1|
33
8 |A2|

5
4 ,

which completes the proof of Equation (5).

With Lemma 3.2.2, we can start to estimate the relation between the sum
set and the product set. The following results are also motivated by [8],[13], and
[18]. To be more specific, Xue studied Erdös-Szemerédi Conjecture in the real
number while Stevens and De Zeeuw proved several useful Incidence Geometry
results in arbitrary fields. Thus, we combine their works to obtain Proposi-
tion 3.2.4 and Theorem 3.2.9, which are the Fp-version of Proposition 3.2 and
Theorem 1.6 in [18].

Definition 3.2.3 (nth-order energy). Previously, the energy we considered,
which is called second-order energy, is equal to

E+(A,B) := |{(a, a′, b, b′) ∈ A×A×B ×B | a− a− b = a′ − b′}|

=
∑

z∈A−B

rA−B(z)
2

where rA−B(z) := |{(a, b) ∈ A×B | z = a− b}|. Now, we generalize this con-
cept into nth-order energy, which is defined as follows:

E+
n (A,B) := |{(a1, . . . , an, b1, . . . , bn) ∈ An ×Bn | a1 − b1 = · · · = an − bn}|

=
∑

z∈A−B

rA−B(z)
n
.

Proposition 3.2.4. Let A,B ⊆ Fp. Suppose that |A| ≲ |B| ≪ p
2
5 . Then,

E+
3 (A,B)

4
3 |B|−4 ≲ |A ·A|.

To prove this proposition, we will need the following Lemmas:

Lemma 3.2.5. Let A,B ⊆ Fp with |A| ≤ |B| ≪ p
2
5 and

L := {la,b : y = ax+ b | (a, b) ∈ A×B}.

Then, for any P ⊆ F2
p with |A||B|2 ≤ |P|3 and |A||P| ≪ p2, we have

I(P,L) ≪ |A|
3
4 |B|

1
2 |P|

3
4 + |P|.

13



Proof. Define P ′ := A × B and L′ := {lc,d : −y = cx − d | (c, d) ∈ P}. Then,
I(P,L) = I(P ′,L′). Thus, by theorem 3.1.1, we know that

I(P,L) = I(P ′,L′) ≪ |A|
3
4 |B|

1
2 |P|

3
4 + |P|.

Lemma 3.2.6. Let A,B,X ⊆ Fp such that |X| ≤ |A||B| and |A| ≤ |B| ≪ p
2
5 .

Then, ∑
x∈X

E+(A, xB) ≪ |A|
5
3 |B|

4
3 |X|

2
3 .

Proof. Note that ∑
x∈X

E+(A, xB) =
∑
x∈X

∑
y∈Fp

r2A+xB(y). (18)

Claim. Let Rt := {(x, y) | rA+xB(y) ≥ t}. Then, for any integer 2 ≤ t ≤ |A|,

|Rt| ≪
|A|3|B|2

t4
.

Note that for t > |A|, Rt = ∅. Define a collection of lines L := {la,b : y =
ax + b | (a, b) ∈ A × B}. Since rA+xB(y) = |{(a, b) | y = ax + b}|. Thus, for
every pair (x, y) ∈ Rt, |{la,b | (x, y) ∈ la,b}| ≥ t. Divide it into two cases:

1. Assume |A||B|2 ≤ |Rt|3 so that we can apply lemma 3.2.5. By lemma
3.2.5,

t|Rt| ≤ I(Rt,L) ≪ |A|
3
4 |B|

1
2 |Rt|

3
4 + |Rt|

⇒ |Rt| ≪
|A|3|B|2

t4
+

|Rt|
t

≪ |A|3|B|2

t4

since |Rt| ≤ |A|2|B|2. This completes the proof of the claim.

2. Assume |Rt|3 ≤ |A||B|2. Then, via this assumption,

|Rt| ≤ |A|
1
3 |B|

2
3 × t4

|A|3|B|2︸ ︷︷ ︸
=O(1)

×|A|3|B|2

t4
≪ |A|3|B|2

t4
,

which also completes this proof of the claim.

Let ∆ be a parameter to be determined later. Then, by equation (18),∑
x∈X

E+(A, xB) =
∑
x∈X

∑
y∈Fp

r2A+xB(y)

=
∑

(x,y)∈X×Fp

rA+xB(y)≤∆

r2A+xB(y) +
∑

(x,y)∈X×Fp

rA+xB(y)>∆

r2A+xB(y)

14



1. For the first term, observe that∑
(x,y)∈Fp

rA+xB(y)≤∆

r2A+xB(y) ≤ ∆
∑
x∈X

∑
y∈Fp

rA+xB(y) = ∆|A||B||X|.

2. For the second term, by the above claim, we have∑
(x,y)∈X×Fp

rA+xB(y)>∆

r2A+xB(y) =
∑
j≥1

∑
(x,y)∈X×Fp

2j−1∆<rA+xB(y)≤2j∆

r2A+xB(y)

≪
∑
j≥1

(
|A|3|B|2

24j−4∆4

)
22j∆2 ≪ |A|3|B|2

∆2
.

Let ∆ ∼ |A|
2
3 |B|

1
3 |X|−

1
3 . Then, we know that∑

x∈X

E+(A, xB) ≪ |A|
5
3 |B|

4
3 |X|

2
3 .

Lemma 3.2.7. Let A,B be finite subsets of Fp with |A| ≪ |B| ≪ p
2
5 . Then,

R(Fp, A,B) ≲ |A|
11
3 |B|3.

Proof. Let Q := (A + B)/(A + B) and Zt := {z ∈ Fp | rQ(z) ≥ t}. Note that
for any t ≥ 1,

t|Zt| ≤
∑
z∈Zt

rQ(z) ≤
∑
z∈Q

rQ(z) = |A|2|B|2.

1. Assume |Zt| ≥ |A||B|. Then,

|A|B| ≥ t ⇒ |Zt| ≤
|Zt|2

t
≤ |A|3|B|3

t2
.

2. On the other hand, suppose |Zt| ≤ |A||B|. Observe that every solution of
the equation

z =
a2 + b2
a1 + b1

is a solution to
b2 − za1 = zb1 − a2 = y ∈ Fp.

Thus,

rQ(z) ≤
∑
y∈Fp

rB−zA(y)rzB−A(y) ≤
∑
y∈Fp

r2B−zA(y) + r2zB−A(y)

2

=
1

2

(
E+(B, zA) + E+(zB,A)

)
.
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We sum over z ∈ Zt and get

t|Zt| ≤
1

2

∑
z∈Zt

(
E+(B, zA) + E+(zB,A)

)
≪ |A|

5
3 |B|

4
3 |Zt|

2
3

⇒ |Zt| ≪
|A|5|B|4

t3

by lemma 3.2.6.

Therefore,

R(Fp, A,B) =
∑
z∈Q

r2Q(z) =

|Q|∑
t=1

t2 (|Zt| − |Zt+1|) ∼
|Q|∑
t=1

t|Zt|

=
∑

t:|Zt|≥|A||B|

t|Zt|+
∑

t:|Zt|≤|A||B|

t|Zt|

≪
∑

t:|Zt|≥|A||B|

|A|3|B|3

t
+

∑
t:|Zt|<|A||B|
t≤|A|

4
3 |B|

t|Zt|+
∑

t:|Zt|<|A||B|
t≥|A|

4
3 |B|

|A|5|B|4

t2

≲ |A|3|B|3 + |A|
11
3 |B|3 = |A|

11
3 |B|3.

Lemma 3.2.8. Let A ⊆ Fp with |A| ≪ p
1
5 . Then, there is a subset A′ ⊆ A

such that

|A′| ≳ E+
3 (A)

1
2 |A|−1

and E+
3 (A)

4
E×(A′)

3 ≪ |A|12|A′|12.

Proof. Via a regular dyadic pigeonhole argument, there is a number t ≤ |A| and
a set of popular differences

P := {x ∈ A−A | t ≤ rA−A(x) < 2t} such that E+
3 (A) ≈ |P |t3.

Again, by applying dyadic argument, there is a q1 ≤ |A| and a set of popular
abscissae

A1 = {a ∈ A | q1 ≤ rP+A(a) < 2q1}

such that
|A1|q1 ≈

∑
a∈A1

rP+A(a) ≈
∑
x∈P

rA−A(x) ≈ |P |t.

Using dyadic argument once again, there is a q2 ≤ |A1| and a set of popular
coordinates

A2 = {b ∈ A | q2 ≤ rA1−P (b) < 2q2}

such that
|A2|q2 ≈

∑
b∈A2

rA1−P (b) ≈
∑
a∈A1

rP+A(a) ≈ |A1|q1.

16



Since q2 ≲ |A1|, either q1 ≲ |A1| or q2 ≲ |A1| ≲ q1 ≲ |A2|. Assume

q2 ≲ |A1| ≲ q1 ≲ |A2|

For the other case, the proof is similar. By construction, for any b ∈ A2,
|A∩ (P + b)| ≈ q2. Now there are E×(A2) quadruples (b1, b2, b3, b4) ∈ A2

4 such
that

b1
b2

=
b3
b4
.

Thus, for every such tuple (b1, b2, b3, b4), there are approximately q2
4 choices of

(a1, a2, a3, a4) such that ai ∈ A1 ∩ (P + bi) and

a1 − (a1 − b1)

a2 − (a2 − b2)
=

a3 − (a3 − b3)

a4 − (a4 − b4)
.

Denote si = ai − bi ∈ P . Then,

E×(A2)

(
|P |t
|A2|

)4

≈ E×(A2)q2
4 ≪ N, (19)

where

N =

∣∣∣∣{(a1, . . . , a4, s1, . . . , s4) ∈ A4 × P 4

∣∣∣∣ a1 − s1
a2 − s2

=
a3 − s3
a4 − s4

∈ A2/A2

}∣∣∣∣
= R(Z,A,−P )

with Z := A2/A2 and −P := {−s | s ∈ P}. Denote

r(z) = |{(a1, a2, s1, s2) ∈ A2 × P 2 | (a1 − s1) = z(a2 − s2)}| ⇒ N ≤
∑
z∈Z

r2(z).

Divide it into two cases:

1. Assume |P | ≤ |A|. By lemma 3.2.7 and equation (19),

N = R(Z,A,−P ) ≪ |A|3|P |
11
3 ⇒ E×(A2)

(
|P |t
|A2|

)4

≪ |A|3|P |
11
3

⇒ |P |
1
3 t4 ≪ |A|3|A2|4

E×(A2)
.

Thus,

E+
3 (A) ≈ |P |t3 ≪ |P |

3
4

(
|A|3|A2|4

E×(A2)

) 3
4

≪ |A|3|A2|3

E×(A2)
3
4

. (20)

2. On the other hand, for |P | > |A|, it satisfies the assumption of Lemma
3.2.2. Thus, by Lemma 3.2.2 and Equation (19),

N = R(Z,A,−P ) ≲ |A|
33
8 |A2|

5
2 ⇒ E×(A2)

(
|P |t
|A2|

)4

≲ |A|
33
8 |P |

5
2

⇒ |P |
3
2 t4 ≲

|A|
33
8 |A2|4

E×(A2)
.
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Thus,

E+
3 (A) ≈ |P |t3 ≲ |P |−

1
8

(
|A|

33
8 |A2|4

E×(A2)

) 3
4

≪ |A|
95
32 |A2|3

E×(A2)
3
4

(21)

Combining equations (20) and (21), we get

E+
3 (A) ≲

|A|3|A2|3

E×(A2)
3
4

⇒ E+
3 (A)

4
E×(A2)

3
≲ |A|12|A2|12.

Additionally, since t ≤ |A|,

|A2|2 ≳ |A2|q2 ≈ |P |t ≈ E+
3 (A)

t2
≥ E+

3 (A)

|A|2
.

Set A′ = A2 and we get the conclusion.

Proof of Proposition 3.2.4. Similar to the proof of lemma 3.2.8, there is a num-
ber t ≤ |A| and a set of popular differences

P := {x ∈ A−B | t ≤ rA−B(x) < 2t} such that E+
3 (A,B) ≈ |P |t3.

By dyadic decomposition again, there is a number q ≤ |A| and a set of popular
abscissae

A1 := {a ∈ A | q ≤ rP+B(a) < 2q}

such that
|A1|q ≈

∑
a∈P+B

rP+B(a) ≈
∑
x∈P

rA−B(x) ≈ |P |t.

Divide it into two cases:

1. If |P | ≤ |B|, then

|A1|4

|A1 ·A1|
× |P |4t4

|A1|4
≲ E×(A1)q

4 ≈ R(Fp, P,B) ≲ |P |
11
3 |B|3

⇒ |P |
1
3 t4 ≲ |A1 ·A1||B|3.

⇒ E+
3 (A,B) ≈ |P |

3
4

(
|P |

1
3 t4
) 3

4

≲ |P |
3
4 |A1 ·A1|

3
4 |B|

9
4 ≲ |A1 ·A1|

3
4 |B|3.

(22)

2. If |P | > |B|, then since |A1/A1| ≲ |B|2, we can apply Lemma 3.2.2 to get

|A1|4

|A1 ·A1|
× |P |4t4

|A1|4
≲ E×(A1)q

4 ≈ R(Fp, P,B) ≲ |B|
33
8 |P |

5
2 .
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That is,

|P |
3
2 t4 ≲ |A ·A||B|

33
8 ⇒

(
|P |t3

) 4
3 ≲ |P |−

1
6 |A ·A||B|

33
8

⇒ E+
3 (A,B)

4
3 ≈

(
|P |t3

) 4
3 ≲ |A ·A||B|

95
24

⇒ E+
3 (A,B) ≲ |A ·A|

3
4 |B|

95
32 .

(23)

Combining equations (22) and (23), we get

E+
3 (A,B) ≲ |A ·A|

3
4 |B|3 ⇒ E+

3 (A,B)
4
3 |B|−4 ≲ |A ·A|,

which completes this proof.

Finally, via the above lemmas, we obtain a new sum-product estimate in Fp.

Theorem 3.2.9. Let A ⊆ Fp with |A| ≪ p
2
5 . Then,

|A+A|8|A ·A|3 ≳ |A|12.

Especially, we have

max{|A+A|, |A ·A|} ≳ |A|1+
1
11 .

Proof. By Hölder inequality,

|A|2 =
∑

x∈A+A

rA+A(x) ≤ |A+A|
2
3

( ∑
x∈A+A

r3A+A(x)

) 1
3

⇒ |A+A| ≥ |A|3

E+
3 (A)

1
2

.

Together with Proposition 3.2.4, we have{
E+

3 (A)
4
3 |A|−4 ≲ |A ·A|

E+
3 (A)

− 1
2 |A|3 ≤ |A+A|

⇒

{
E+

3 (A)
4|A|−12 ≲ |A ·A|3

E+
3 (A)

−4|A|24 ≤ |A+A|8

⇒ |A|12 ≲ |A+A|8|A ·A|3,

which completes the proof.

Remark 3.2.10. Although we can see that if we compare Theorem 3.2.9 and The-
orem 3.1.2, the latter is stronger in general, the proving technique of Theorem
3.2.9 is totally different from Elekes’ method, so this provides a new perspective
to Erdös-Szemerédi Conjecture in Fp.

3.3 A better estimate of additive energy in Fp

In this part, we use “the point-plane incidence” bound, proved in [9], to give
another estimate. This is also a piece of evidence to show the strong connection
between Incidence Geometry and Sum-Product Estimate.
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Theorem 3.3.1 (Theorem 3, [9]). Let P,Π be sets of points and planes, of
cardinalities respectively m and n in Fp. Suppose that m ≥ n and n = O(p2).
Let k be the maximum number of collinear planes. Then,

|I(P,Π)| = O(m
√
n+ km).

Using this bound, we prove the following theorem.

Theorem 3.3.2. Let A ⊆ Fp with |A| ≪ p
1
2 . Then,

|A+A|2|A ·A|3 ≳ |A|6.

Especially, we have

max{|A+A|, |A ·A|} ≳ |A|1+
1
5 .

Proof. Notice that

E+(A) =
∣∣{(a1, a2, a3, a4) ∈ A4

∣∣ a1 + a2 = a3 + s4
}∣∣

= |A|−2
N1 ≤ |A|−2

N2

(24)

where

N1 :=
∣∣{(a1, a2, a3, a4, a5, a6) ∈ A6

∣∣ (a1a2)a2−1 + a5 = (a3a4)a4
−1 + a6

}∣∣
and N2 is defined as∣∣∣{(u1, u2, v1, v2, a1, a2) ∈ (A ·A)

2 ×
(
A−1

)2 ×A2
∣∣∣u1v1 + a1 = u2v2 + a2

}∣∣∣ .
Consider

P := {(u1, a1, v2) ∈ (A ·A)×A×A−1}

and
Π := {π : ax+ y = bz + c | a ∈ A−1, b ∈ A ·A, c ∈ A}.

Note that |P| = |Π| = |A ·A||A|2 ≪ p2 and

I(P,Π) := |{(p, π) ∈ P ×Π | p ∈ π}| = N2.

For any line

l = {(x, y, z) = (x0 + αt, y0 + βt, z0 + γt) | t ∈ Fp},

define
Πl := {π ∈ Π | l ∈ π}.

Then, k = maxl |Πl|. For a plane π : ax+ y = bz + c ∈ Πl, we have{
ax0 + y0 = bz0 + c
aα+ β = bγ

⇒
{

b = b(a)
c = c(a)

if such b, c exist.
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That is, |Πl| ≤ |A| ⇒ k ≤ |A|. Therefore, by equation (24) and Theorem 3.3.1,
we know that

E+(A) ≤ |A|−2
N2 = |A|−2I(P,Π)

≪ |A|−2
(
|A ·A|

3
2 |A|3 + |A||A ·A||A|2

)
≪ |A||A ·A|

3
2 .

Applying Cauchy-Schwarz inequality, we have

|A|4

|A+A|
≪ |A||A ·A|

3
2 ⇒ |A|6 ≪ |A+A|2|A ·A|3.

Remark 3.3.3. In this theorem, we can see that the exponential part, 1+ 1
5 is as

same as Corollary 3.1.2. Therefore, in this sense, we obtained a result as good
as Stevens did. However, in Corollary 3.1.3, we can see that in extremal cases,
Corollary 3.1.3 is still better than our result. In spite of this, the idea of adapting
point-plane incidence to proofs of sum-product theorems is still valueless.

4 Other Incidence Geometry Problems

In the previous sections, we already realize how powerful an Incidence Geometry
result can be in the sum-product estimate. Therefore, this section will focus on
several kinds of Incidence Geometry problems whose connection to sum-product
estimate is more implicit than previous ones and briefly introduce their relation
to sum-product estimate.

4.1 Collinear lines in grids

In the proof of Theorem 6.2 in [1], Bourgain, Katz, and Tao observed that if the
point-line incidence I(P,L) is large, then the point set should contain several
large grid-like structures. Hence, to improve the upper bound of I(P,L), a
more delicate result about the incidence relation between lines and grids must
be needed. Additionally, Xue (2020, [18]) already applied this idea in the real
number, and this section will extend his skill to the finite field Fp. To start
with, we define an incidence amount as follows.

Definition 4.1.1 (T o, T ). For any three subsets A,B,C ⊆ Fp, define

T o(A,B,C)

:=
∣∣{(u1, u2, u3) ∈ A2 ×B2 × C2 | {u1, u2, u3} are collinear and distinct}

∣∣
and

T (A,B,C) := the number of tuples (a1, a2, b1, b2, c1, c2) ∈ A2 ×B2 × C2

with (b1 − a1)(c2 − a2) = (c1 − a1)(b2 − a2).
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Now, we want to bound T (A,B,C), but before that, we need the following
Lemma 4.1.2 and 4.1.3 to obtain an upper bound for T o(A,B,C) and use the
relation between T and T o to get the desired upper bound in Proposition 4.1.4.

Lemma 4.1.2. Let A,B be subsets of Fp with |A| ≤ |B| ≪ p
2
5 and P = A×B.

Then,

|L| ≪ min

{
|A|3|B|2

k4
,
|A|2|B|2

k2

}
+

|L|
k

with
L := {l : a line in Fp

2 | |l ∩ (A×B)| ≥ k}.

Proof. Let L be the collection of lines l with |l ∩ (A×B)| ≥ k. Thus,

k|L| ≤ I(A×B,L).

If |L|3 < |A||B|2, this lemma holds. i.e. We may assume |L|3 ≥ |A||B|2.
Additionally,

|A||L| ≪ |A||A×B|2 ≪ p2,

so we can apply theorem 3.1.1. By theorem 3.1.1,

I(A×B,L) ≪ |A|
3
4 |B|

1
2 |L|

3
4 + |L| ⇒ |L| ≪ |A|3|B|2

k4
+

|L|
k

. (25)

Moreover, by Cauchy-Schwarz incidence bound,

k|L| ≤ I(A×B,L) ≪ |A||B||L|
1
2 + |L| ⇒ |L| ≪ |A|2|B|2

k2
+

|L|
k

. (26)

We complete the proof by combining equations (25) and (26).

Lemma 4.1.3. Suppose that A1, A2, A3 ⊂ Fp with |A1| ≤ |A2| ≤ |A3| ≪ p
2
5 .

Let L be the collection of lines such that l ∈ L if and only if l contains three
distinct points u1, u2, u3 with ui ∈ Ai

2. For each l ∈ L and i = 1, 2, 3, define
αi,l = |l ∩ (Ai ×Ai)|. For 1 ≤ k ≤ |Ai|, define Li,k := {l ∈ L | αi,l ≥ k}. Then,
we have ∑

l∈Li,2

αi,l
s ≲ |Ai|4 + |Ai|

s
2+3

+ |Ai|s+1
for i = 1, 2, 3 and s > 1.

22



Proof. Note that∑
l∈Li,2

αi,l
s =

∑
2≤k≤|Ai|

|{l ∈ Li,2 | αi,l = k}|ks

≈
∑

2≤k≤|Ai|

|{l ∈ Li,2 | αi,l = k}|
∑

2≤m≤k

ms−1


=

∑
2≤m≤|Ai|

ms−1
∑

k≥m,k≤|Ai|

|{l ∈ Li,2 | αi,l = k}|

︸ ︷︷ ︸
=|{l∈Li,2|αi,l≥m}|

≈
∑

2≤m≤|Ai|

ms−1|{l ∈ Li,2 | αi,l ≥ m}| =
∑

2≤m≤|Ai|

ms−1|Li,m|.

Divide it into three parts:

1. For 2 ≤ m ≤ log |Ai|, via lemma 4.1.2,

|Li,m| ≲ |Ai|4

m2
+

|L|
m

≲ m−1|Ai|4.

2. Similarly, for log |Ai| ≤ m ≤ |Ai|
1
2 , we can get

|Li,m| ≲ m−2|Ai|4.

3. As for |Ai|
1
2 ≤ m ≤ |Ai|, we obtain

|Li,m| ≲ |Ai|5

m4
+

|L|
m

≲ m−4|Ai|5.

To sum up, we have∑
l∈Li,2

αi,l
s ≲

∑
2≤m≤log |Ai|

ms−2|Ai|4 +
∑

log |Ai|≤m≤|Ai|
1
2

ms−3|Ai|4

+
∑

|Ai|
1
2 ≤m≤|Ai|

ms−5|Ai|5

≲|Ai|4 +
(
1 + |Ai|

s−2
2

)
|Ai|4 +

(
|Ai|

s−4
2 + |Ai|s−4

)
|Ai|5

≲|Ai|4 + |Ai|
s
2+3

+ |Ai|s+1
.

Proposition 4.1.4. Suppose that A1, A2, A3 are three finite subsets of Fp with

|A1| ≤ |A2| ≤ |A3| ≪ p
2
5 . Then,

T o(A1, A2, A3) ≲min
{
|A1||A2|

9
4 |A3|

5
4 , |A1|

1
2 |A2|

5
2 |A3|

5
4 , |A2|2|A3|2

}
+ |A1|2|A2|

5
4 |A3|

5
4 + |A1|

3
2 |A2|

3
2 |A3|

5
4
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and
T (A1, A2, A3) ≲ T o(A1, A2, A3) + |A1|2|A3|2.

Proof. It is clear that

T o(A1, A2, A3) ≤
∑
l∈L

α1,lα2,lα3,l.

Denote I1 = {1} and I2 = N \ {1} and for (j1, j2, j3) ∈ {1, 2}3, define

Sj1,j2,j3 :=
∑
l∈L

αi,l∈Iji

α1,lα2,lα3,l.

By Cauchy-Schwarz inequality and Lemma 4.1.3, we have

S1,2,2 ≤
∑

l∈(L2,2∩L3,2)\L1,2

α2,lα3,l ≤ |L|
1
2

 ∑
l∈L2,2∩L3,2

(α2,lα3,l)
2

 1
2

≪
(
|A1|2|A2|2

) 1
2


 ∑

l∈L2,2

(
α2,l

2
)2 1

2
 ∑

l∈L3,2

(
α3,l

2
)2 1

2


1
2

≪ |A1||A2|
9
4 |A3|

5
4 .

Also, by Lemma 4.1.3,

S1,2,2 ≤
∑

l∈L2,2∩L3,2

α2,lα3,l ≤

 ∑
l∈L2,2

α2,l
2

 1
2
 ∑

l∈L3,2

α3,l
2

 1
2

≤

 ∑
l∈L2,2

α2,l
2

 1
2

|L3,2|
1
2

 ∑
l∈L3,2

(
α3,l

2
)2 1

2


1
2

≲ |A2|2
(
|A1|2|A2|2

) 1
4 |A3|

5
4 ≲ |A1|

1
2 |A2|

5
2 |A3|

5
4 .

Moreover,

S1,2,2 ≤
∑

l∈L2,2∩L3,2

α2,lα3,l ≤

 ∑
l∈L2,2

α2,l
2

 1
2
 ∑

l∈L3,2

α3,l
2

 1
2

≪ |A2|2|A3|2.

Thus, combining the above three bounds, we get

S1,2,2 ≪ min
{
|A1||A2|

9
4 |A3|

5
4 , |A1|

1
2 |A2|

5
2 |A3|

5
4 , |A2|2|A3|2

}
. (27)
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Note that for i = 2, 3,∑
l∈L

αi,l=1

αi,l
s ≤ |L| ≤ |A1|2|A2|2 ≤ |Ai|4.

Thus, by Cauchy-Schwarz inequality and Lemma 4.1.3, we have

S2,j2,j3 ≤

 ∑
l∈L1,2

α1,l
2

 1
2

 ∑
l∈L

α2,l∈Ij2 ,α3,l∈Ij3

(α2,lα3,l)
2


1
2

≤

 ∑
l∈L1,2

α1,l
2

 1
2


 ∑

l∈L
α2,l∈Ij2

(
α2,l

2
)2


1
2
 ∑

l∈L
α3,l∈Ij3

(
α3,l

2
)2


1
2


1
2

=

 ∑
l∈L1,2

α1,l
2

 1
2

 ∑
l∈L

α2,l∈Ij2

α2,l
4


1
4
 ∑

l∈L
α3,l∈Ij3

α3,l
4


1
4

≪|A1|2|A2|
5
4 |A3|

5
4

(28)

Similarly, for S1,1,j3 and S1,2,1, we have the following estimates:

S1,1,j3 ≤
∑
l∈L

α3,l∈Ij3

α3,l ≤ |L|
3
4

 ∑
l∈L

α3,l∈Ij3

α3,l
4


1
4

≲
(
|A1|2|A2|2

) 3
4
(
|A3|5

) 1
4

= |A1|
3
2 |A2|

3
2 |A3|

5
4

(29)

and

S1,2,1 ≤
∑

l∈L2,2

α2,l ≤ |L|
3
4

 ∑
l∈L

α2,l∈Ij2

α2,l
4


1
4

≲
(
|A1|2|A2|2

) 3
4
(
|A2|5

) 1
4

≪ |A1|
3
2 |A2|

11
4

(30)
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To sum up, by equation (27), (28), (29), and (30), we know that

T o(A1, A2, A3) ≤
∑

j1,j2,j3

Sj1,j2,j3

≲min
{
|A1||A2|

9
4 |A3|

5
4 , |A1|

1
2 |A2|

5
2 |A3|

5
4 , |A2|2|A3|2

}
+ |A1|2|A2|

5
4 |A3|

5
4 + |A1|

3
2 |A2|

3
2 |A3|

5
4 + |A1|

3
2 |A2|

11
4

≲min
{
|A1||A2|

9
4 |A3|

5
4 , |A1|

1
2 |A2|

5
2 |A3|

5
4 , |A2|2|A3|2

}
+ |A1|2|A2|

5
4 |A3|

5
4 + |A1|

3
2 |A2|

3
2 |A3|

5
4 .

As for the estimate of T (A1, A2, A3), consider those terms which are counted
by T (A1, A2, A3) but not by T o(A1, A2, A3). For (a1, a2) ∈ A1

2, (b1, b2) ∈
A2

2, (c1, c2) ∈ A3
2 with

(b1 − a1)(c2 − a2) = (c1 − a1)(b2 − a2), (31)

if they are distinct and collinear, then a1 ̸= b1, a1 ̸= c1, and b1 ̸= c1. On the
other hand, if a1 = b1, there are at most

|A1 ∩A2 ∩A3||A1||A2||A3|+ |A1 ∩A2|2|A3|2

solutions to the equation (31). For the case a1 = c1 and b1 = c1, we have the
bound

|A1 ∩A2 ∩A3||A1||A2||A3|+ |A1 ∩A3|2|A2|2

and
|A1 ∩A2 ∩A3||A1||A2||A3|+ |A2 ∩A3|2|A1|2, respectively.

To sum up, we have T (A1, A2, A3)− T o(A1, A2, A3) ≪ |A1|2|A3|2.

4.2 The number of bisectors in a subset of
(
Z⧸p3Z

)2
While working on problems about distances between pairs of points in a given
point set P ⊆ R2, it is natural to ask the total number of possible bisectors
and the incidence relation between them. Moreover, Hanson, Lund, and Roche-
Newton generalized this question in F2

p in [7]. To start with, for a vector x =
(x1, x2) ∈ F2

p, define

∥x∥ ≡ x1
2 + x2

2 mod p

and for two points x, y ∈ F2
p, call ∥x − y∥ as the “distance” between them.

Notice that although this distance is not a norm (even not a metric) in the
mathematical sense, it still preserves several structures of F2

p. Next, the authors
defined the “perpendicular bisector” between two points x, y ∈ F2

p to be

B(x, y) := {z ∈ F2
p | ∥z − x∥ = ∥z − y∥}

26



and for a point set P ⊆ F2
p, define

B(P) := {B(x, y) | x, y ∈ P}.

After these settings, in [7], the authors proved the following theorem:

Theorem 4.2.1 (Theorem 1, [7]). If a point set P ⊆ F2
p with |P| ≫ p

3
2 , then

|B(P)| ≫ p2.

In other words, the order of their perpendicular bisector is as large as the order
of all lines.

One of my research projects is to extend this result to more general settings.
However, it turns out it is a difficult problem to obtain a similar result as in
Fp because losing the structure of being a field creates many difficult problems.

We now consider point sets in
(
Z⧸p3Z

)2
where p is a Gaussian prime, instead

of in F2
p. In the following text, we denote Z⧸p3Z as Zp3 or Zq, where q = p3,

for simplicity. The reason why we choose Z2
q out of the general case

(
Z⧸nZ

)2
is that we want to reduce the number of solutions to ∥x∥ = 0, which would be
very annoying if there are too many solutions. Notice that the above definition
of ∥ · ∥, “distance,” and “perpendicular bisector” are also valid in the case of
Z2
q. Our study in this scope is the following result in Z2

q which is based on a
conjecture that I made which I believe to be true.

Theorem 4.2.2. Assume that Conjecture 4.2.10 holds. For any m > 5
3 and

point set P ⊆ Z2
q with |P| ≫ qm, we have

|B(P)| ≫ q2(m−1).

To prove this theorem, let us start with several fundamental geometric defi-
nitions in Z2

q.

Definition 4.2.3 (rotation, reflection, and translation).

1. A matrix of the form (
a −b
b a

)
, a2 + b2 = 1

is called a rotation matrix. For u ∈ Z2
q and R is a rotation matrix, then a

rotation about u is an affine map of the form

R : v 7→ R(v − u) + u.

2. A matrix of the form (
a b
b −a

)
, a2 + b2 = 1
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is called a reflection matrix. A reflection about u by a reflection matrix S
is an affine map of the form

S : v 7→ S(v − u) + u.

3. A translation by u is an affine map of the form

T : v 7→ v + u.

We call a translation non-trivial if u ̸= 0.

Definition 4.2.4 (non-isotropic). A line l : ax+ by = c is called non-isotropic
if a, b, and a2 + b2 are units. Otherwise, it is isotropic.

Based on these definitions above, we followed the steps of Hanson, Lund, and
Roche-Newton and modified their proving techniques to generalize their results
into the case of Z2

q. To prove the main theorem, we need the following Lemma
4.2.5 to Lemma 4.2.8. However, because their proof will need more fundamental
lemmas, we move their proofs to Appendix C. for the sake of fluency.

Lemma 4.2.5. For d ∈ Zq, let Q(d) be the number of solutions to x2 ≡ d
mod q.

Q(d) =



2 if
(
d
p

)
= 1

0 if
(
d
p

)
= −1

0 if p | d and p2 ∤ d
2p if p2 | d and

(d/p2

p

)
= 1

0 if p2 | d and
(d/p2

p

)
= −1

p if d = 0

where
(
d
p

)
is the Legendre symbol.

Lemma 4.2.6. If x, y, z, w ∈ Z2
q are such that B = B(x, z) = B(y, w) is non-

isotropic then
∥x− y∥ = ∥z − w∥.

Lemma 4.2.7. For a given point u ∈ Z2
q with q = p3, there are p3 − p2 non-

isotropic lines passing u.

Lemma 4.2.8. Suppose u ∈ Z2
q and ρ ∈ Zq. Then, we have:

|Cρ(u)| =


p2 if ρ ≡ 0,

p3 + p2 if ρ ∈ p2 Z∗
q ,

0 if ρ ∈ pZ∗
q ,

p3 + p2 if ρ ∈ Z∗
q .
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Define Dq,ρ as the number of pairs (u1, u2) ∈ Z2
q ×Z2

q such that ∥u1 − u2∥ ≡ ρ.
Then, we have

Dq,ρ =


p8 if ρ ≡ 0,

p9 + p8 if ρ ∈ p2 Z∗
q ,

0 if ρ ∈ pZ∗
q ,

p9 + p8 if ρ ∈ Z∗
q .

After proving these Lemmas, we faced a major problem that is much more
complicated when considering Z2

q rather than F2
p. To be more specific, in F2

p,
Hanson, Lund, and Roche-Newton proved the following lemma:

Lemma 4.2.9 (Lemma 7, [7]). Given any point pairs x = (x1, x2) ∈ F2
p × F2

p

and y = (y1, y2) ∈ F2
p × F2

p with ∥x1 − x2∥ = ∥y1 − y2∥, define N (x, y) to be
the number of pairs (R1,R2) of reflections with yi = R2 ◦ R1(xi) for i = 1, 2.
Then,

N (x, y) =


p− 1 if x1 − x2 ̸= y1 − y2 and p ≡ 1 mod 4,

p+ 1 if x1 − x2 ̸= y1 − y2 and p ≡ 3 mod 4,

p if x1 − x2 = y1 − y2 and ∥x1 − y1∥ ≠ 0,

0 if x1 − x2 = y1 − y2 and ∥x1 − y1∥ = 0.

However, in Z2
q, we have no criterion for the N (x, y) value. This problem

also explicitly shows how the structure of Z2
q differs from the structure of F2

p.
Thankfully, with the help of a computer program, we directly calculated the
distribution of N (x, y) for small p and made a conjecture as follows.

Conjecture 4.2.10. Given any point pairs x = (x1, x2) ∈ Z2
q ×Z2

q and y =

(y1, y2) ∈ Z2
q ×Z2

q, define N (x, y) to be the number of pairs (R1,R2) of reflec-
tions with yi = R2 ◦ R1(xi) for i = 1, 2 and let

Ax(n) := |{y | N (x, y) = n}| .

Then, we have

Ax(p
3 − 3p2) = p9 − p8, Ax(p

3 − p2) = p8, Ax(p
3) = p8 − 2p7 + p6,

Ax(p
4 − p3) = p6 − p5, Ax(p

4) = p5 − 2p4 + p3, Ax(p
5 − p4) = p3 − p2,

Ax(p
5) = p2 − 2p+ 1, Ax(p

6 − p5) = 1, Ax(n) = 0

for all n not mentioned above.

Assume the above conjecture is true. Now, we introduce two well-known
theorems in graph theory and linear algebra, which help us finish the proof of
our main result.

Theorem 4.2.11 (Expander Mixing Lemma, [7]). Let G = (V,E) be a δ-regular
graph with |V | = n, and let A be the adjacency matrix for G. Suppose the

29



absolute values of all but the largest eigenvalue of A are bounded by λ. Suppose
that f, g ∈ L2(V ). Then, we have

|⟨f,Ag⟩ − δnE(f)E(g)| ≤ λ∥f∥∥g∥.

Especially, for any S, T ⊆ V ,∣∣∣∣E(S, T )− δ|S||T |
n

∣∣∣∣ ≤ λ
√

|S||T |

where E(S, T ) is the number of edges between S and T .

Theorem 4.2.12 (Gershgorin Circle Theorem, [2]). Let A = [Aij ] be an n× n
matrix and let ri =

∑n
j=1 |aij | be the sum of the absolute values of the i-th row of

A. Then, for any eigenvalue λ of A, there is a 1 ≤ i ≤ n such that |λ−aii| ≤ ri.

For simplicity, we declare some notations used in the later context:

Definition 4.2.13 (P̃ , Q′, Q′
d,Π

′
d). Given a point set P ⊆ Z2

q and d ∈ Z∗
q ,

define

P̃ := {(x, y) ∈ P 2 | x− y = (a1, a2) with a1, a2 ∈ Z∗
q},

Q′ = Q′(P ) := {(x, y, z, w) ∈ P̃ 2 | B(x, z) = B(y, w), B(x, z) is non-isotropic},
Q′

d = Q′
d(P ) := {(x, y, z, w) ∈ Q′ | ∥x− y∥ = ∥z − w∥ = d},

Π′
d = Π′

d(P ) := {(x, y) ∈ P̃ | ∥x− y∥ = d}.

With this notation and the assumption of Conjecture 4.2.10, we can prove
the following proposition, which is the most important part of the proof of the
main theorem. A similar result for the F2

p case can be found in Proposition 12
in [7].

Proposition 4.2.14. If Conjecture 4.2.10 is correct, for any d ∈ Z∗
q , we have

|Q′
d| ≪

|Π′
d|

2

p3
+ p5|Π′

d|.

Proof. Let G = (V,E) be a graph with

V := {x = (x1, x2) ∈ Z2
q ×Z2

q | ∥x1 − x2∥ = d} ⇒ |V | = p9 + p8

and

E := {{x, y} | x = (x1, x2), y = (y1, y2)

with B(x1, y1) = B(x2, y2) is non-isotropic}.

For a vertex x ∈ V , define Γ(x) to be the neighborhood of x and notice that
for any x, |Γ(x)| is equal to the number of non-isotropic lines. That is, G is a
(p6 − p5)-regular graph. Additionally, notice that

|Γ(x) ∩ Γ(y)| = |{z ∈ Γ(x) | y ∈ Γ(z)}| = N (x, y).
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Let A be the adjacency matrix of G. Then, the (x, y)-th entry of A2

(A2)xy = |Γ(x) ∩ Γ(y)| = N (x, y).

By Conjecture 4.2.10, A2 is a regular matrix. That is, for every row of A2, the
summation of the absolute value of entries in that row is the same. Let J be
the all-1s matrix, I be the identity matrix, and E be the error matrix with

A2 = (p3 − 3p2)J + (p6 − p5 − p3 + 3p2)I + E.

For the x-th row of E, the absolute row sum is∑
y∈V

|Exy| =
∣∣∣(A2)xy − (p3 − 3p2)− (p6 − p5 − p3 + 3p2)δx,y

∣∣∣
=2p2 × p8 + 3p2 × (p8 − 2p7 + p6)

+ (p4 − 2p3 + 3p2)× (p6 − p5)

+ (p4 − p3 + 3p2)× (p5 − 2p4 + p3)

+ (p5 − p4 − p3 + 3p2)× (p3 − p2)

+ (p5 − p3 + 3p2)× (p2 − 2p+ 1)

+ (p3 − 3p2)× (2p7 − 2p6 + 2p4 − 2p3 + 2p− 2)

=Θ(p10).

Additionally, every diagonal entry of E vanishes, so for any eigenvalue λE of E,
we have

|λE | ≪ p10 (32)

by Theorem 4.2.12.
Since A is a regular matrix, the all-1s vector is an eigenvector of A. Suppose

that v is an eigenvector of A, which is orthogonal to the all-1s vector and
Av = λv. Then,

Ev = (A2 − (p3 − 3p2)J − (p6 − p5 − p3 + 3p2)I)v = (λ2 − p6 + p5 + p3 − 3p2)v.

In other words, v is an eigenvector of E with eigenvalue λ2 − p6 + p5 + p3 − 3p2.
By Equation 32, we know that

|λ2 − p6 + p5 + p3 − 3p2| ≪ p10 ⇒ λ ≪ p5.

Finally, we can use Theorem 4.2.11. Taking S = T = Π′
d, we have

E(Π′
d,Π

′
d) ≪

(p6 − p5)|Π′
d|

2

p9 + p8
+ p5|Π′

d| ≪
|Π′

d|
2

p3
+ p5|Π′

d|.

In the end, by definition, we have |Q′
d| = E(Π′

d,Π
′
d), so we finish the proof.

Next, the following lemma also demonstrates another difference between Z2
q

and F2
p. After the proof of Lemma 4.2.15, we will discuss the difference in the

remark in detail.
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Lemma 4.2.15. For any point set P ⊆ Z2
q, we have

∑
d∈Z∗

q

|Π′
d(P)|2 ≪ |P|4

q
+ q3|P|2.

Proof. For a d ∈ Z∗
q , consider a graph Gd = (Vd, Ed) with

Vd = Z2
q ×Z2

q and Ed = {{(x1, x2), (y1, y2)} ⊂ V | ∥x1 − y1∥ = ∥x2 − y2∥ = d}.

Notice that by definition, we have |Π′
d|

2
= E(P × P,P × P). Now, we want to

use Theorem 4.2.11 to obtain a upper bound of E(P ×P,P ×P). First, notice

that |V | = q4 and Gd is a |Cd(0)|2 = (p3 + p2)
2
-regular graph by Lemma 4.2.8.

Let A be the adjacency matrix of G. By Theorem 4.2.12, every eigenvalue of A
is bounded by ∑

y∈A

|Axy| = (p3 + p2)
2
.

Combining them together, we obtain that

|Π′
d(P)|2 ≪ (p3 + p2)

2|P|4

q4
+ (p3 + p2)

2|P|2

⇒
∑
d∈Z∗

q

|Π′
d(P)|2 ≪ |P|4

q
+ q3|P|2.

This completes our proof.

Remark 4.2.16. It is easy to see that in the above proof, the bound of the

second-largest eigenvalue of A is quite bad. (p3 + p2)
2
is its largest eigenvalue,

which is also the trivial one. However, due to the structure of Gd, it is hard
to apply the skill we used in Proposition 4.2.14. That is, decomposing A2 into
the linear combination of J, I, and an error matrix E (as Hanson, Lund, and
Roche-Newton did in [7]) does not help us. For a reason, in short, both of the
numbers of entries in a given row of A2 equal to 0 and 2, respectively, are about
q2. Since they have almost the same amount, we can not set a proper coefficient
for J such that the error matrix’s row sum is properly bounded. Therefore, the
technique improves nothing but coefficients.

As a result, I am looking for another skill to obtain a statement like

∑
d∈Z∗

q

|Π′
d(P)|2 ≪ |P|4

q
+ q3−ϵ|P|2,∀P ⊆ Z∗

q

for some constant ϵ > 0. If such a statement and Conjecture 4.2.10 hold, we
could get a theorem in the same form as Theorem 4.2.1:

For any P ⊆ Z2
q with |P| ≫ qα, we have B(P) ≫ q2 for some

non-trivial constant α. i.e. α < 2.
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Now, with the help of Lemma 4.2.15, we can prove the following lemma.
This lemma is the final step before the proof of our main goal in this section,
Theorem 4.2.2.

Lemma 4.2.17. If Conjecture 4.2.10 is correct, then for any point set P ⊂ Z2
q,

|Q′(P)| ≪ |P|4

q2
+ q2|P|2.

Proof. By definition of Q′, we know that

|Q′| =
∑
d∈Z∗

q

|Q′
d|.

Together with Proposition 4.2.14 and Lemma 4.2.15, we get

|Q′| ≪
∑
d∈Z∗

q

(
|Π′

d|
2

q
+ q

5
3 |Π′

d|

)
≪ |P|4

q2
+ q2|P|2 + q

5
3 |P|2 ≪ |P|4

q2
+ q2|P|2.

Finally, everything is ready. Let us demonstrate the proof of our main goal.

Proof of Theorem 4.2.2. For a non-isotropic line l ∈ B(P), define its multiplic-
ity w(l) to be the number of pairs (x, y) ∈ P2 with B(x, y) = l. Then, we know
that ∑

l∈B(P )

w(l) =
∣∣∣P̃∣∣∣ .

Since |P| ≫ q
5
3 ,
∣∣∣P̃∣∣∣ = Θ

(
|P|2

)
. Therefore, by Cauchy-Schwarz inequality, we

have

|P|4 ≪

 ∑
l∈B(P)

w(l)

2

≤ |B(P)|

 ∑
l∈B(P)

w(l)
2

 = |B(P)||Q′(P)|.

Together with Lemma 4.2.17, we have

|B(P)| ≫ |P|4
|P|4
q2 + q2|P|2

⇒ |B(P)| ≫ q−2|P|2 ≫ q2(m−1).
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Appendix A. Proof of Szemerédi-Trotter Theo-
rem

Recall (Szemerédi-Trotter Theorem). On Euclidean plane R2, given a point
set P and a line set L, then the number of their incidences

I(P,L) = O
(
|P|

2
3 |L|

2
3 + |P|+ |L|

)
.

Theorem 2.1.1 is first proved by Szemerédi and Trotter in 1983. But the
technique is so complicated, so we decide to use another way to prove it. The
following proof is provided by Székely (1997, [14]).

Proof of Theorem 2.1.1. First, we may discard the lines which contain two or
fewer points since they can provide at most 2|L| incidences in total. For any
line l ∈ L containing kl points in P, these kl points will cut the line into kl − 1
segments.

Consider a graph G = (V,E) with V = P and for any x, y ∈ V , {x, y} ∈ E if
and only if {x, y} is two end points of a segment mentioned above. Notice that
any two lines intersect in at most one point, so the crossing number of G is at

most |L|(|L|−1)
2 . By the crossing number inequality, we know that

|L|(|L| − 1)

2
≥ |E|3

64|V |2
or |E| ≤ 4|P|. (33)

By construction, we know that

|E| =
∑
l∈L

(kl − 1) ≥ 1

2

∑
l∈L

kl =
1

2
I(P,L).

Together with Equation (33), we have

I(P,L) ≤ 2|E| ≪ |P|+ |L|
2
3 |P|

2
3 .

This completes our proof.
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Appendix B. Proof of Szemerédi-Trotter Type
Theorem in Finite Field

Recall (Szemerédi-Trotter type Theorem in Fp, [13]). On F2
p where p is a prime,

given a point set P = A×B and a line set L with

|A| ≤ |B|, |A||B|2 ≤ |L|3, and |A||L| ≪ p2

then the number of their incidences

I(A×B,L) = O
(
|A|

3
4 |B|

1
2 |L|

3
4 + |L|

)
.

Proof of Theorem 3.1.1. First, because of the order of the upper bound, we can
modify L as follows: (In other words, we can remove or add these lines without
affecting the correctness of the statement.)

1. Remove all vertical lines in L:
For those vertical lines in L, they at most contribute |A||B| incidences.
Since |A||B|2 ≤ |L|3, |A||B| ≤ |A|

3
4 |B|

1
2 |L|

3
4 . Thus, the incidence made

by vertical lines will not play a crucial role.

2. We may assume |B|2 ≤ |A||L|:
Since there is no vertical line, we have I(A × B,L) ≤ |A||L|. Assume

|B|2 > |A||L|. Then it is clear that

I(A×B,L) ≤ |A||L| ≤ |A|
3
4 |B|

1
2 |L|

3
4

and thus the Theorem 3.1.1 holds.

3. At most |A|
1
2 |L|

1
2 lines are parallel or concurrent (i.e. passing the same

point):
We iteratively remove a set of parallel or concurrent lines with a size

greater than |A|
1
2 |L|

1
2 . Suppose that in i-th step, we remove ni lines.

Then, these ni lines contribute at most |A||B|+ni incidences and we need

at most |L|
|A|

1
2 |L|

1
2
= |L|

1
2

|A|
1
2
steps. After these steps, we remove at most

|L|
1
2

|A|
1
2

× |A||B|+
∑

ni ≪ |A|
3
4 |B|

1
2 |L|

3
4 + |L|

incidences since |B|2 ≤ |A||L|.

Since L has no vertical lines, the affine dual

L∗ := {(c, d) ∈ F2
p | l : y = cx+ d ∈ L}

of L is well-defined. Then, we have the relation

I(P,L) = |{(a, b, c, d) ∈ A×B × L∗ | b = ca+ d}| .
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If we set

E := {(a, c, d, a′, c′, d′) ∈ (A× L∗)
2 | ca+ d = c′a′ + d′},

then by Cauchy-Schwarz inequality and the above relation, we have

I(P,L) ≤ |B|
1
2 |E|

1
2 .

Next, we will bound |E| with Theorem 3.3.1. Define a point set and a plane set
by

P ′ = {(a, c, d) ∈ A× L∗},Π = {π : cx+ d = ay + z | a ∈ A, (c, d) ∈ L∗}.

Then, we have |P ′| = Π = |A||L| and |E| = I(P ′,Π). Now, via our modification
above, P ′ and L satisfy the condition mentioned in Theorem 3.3.1 with

k ≤ |A|
1
2 |L|

1
2 .

Hence, by Theorem 3.3.1,

I(P ′,Π) ≪ |A|
3
2 |L|

3
2 .

To sum up, we know that

I(P,L) ≤ |B|
1
2 |E|

1
2 ≪ |A|

3
4 |B|

1
2 |L|

3
4 ,

which completes the proof.

Appendix C. Proofs of Lemmas Describing Prop-
erties about Zq

In this Appendix, we will introduce Lemma C.1 to Lemma C.3 and use them
to prove Lemma 4.2.5 to Lemma 4.2.8 in Section 4.2.

Lemma C.1. Suppose that x ∈ Z2
q and S is a reflection that does not fix x.

Then the fixed line of S is B(x,S(x)). Moreover, a good line l is the fixed line
of a unique reflection if and only if it is non-isotropic. If y ∈ Z2

q is any point
such that ∥x − y∥ ̸≡ 0 and the line passing x and y is good, then B(x, y) is
non-isotropic, and there is a unique reflection S such that S(x) = y which fixes
B(x, y).

Proof. Observe that if u is fixed by S then

∥x− u∥ = ∥S(x)− S(u)∥ = ∥S(x)− u∥

so that u ∈ B
(
x,S(x)

)
. Additionally, the fixed part of S formed a line, so the

fixed part of S is B
(
x,S(x)

)
.
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Let u1 and u2 be any distinct points on the line l, which is assumed to be
non-isotropic. Set d = (d1, d2) := u1 − u2. The reflection S by

1

d21 + d22

(
d21 − d22 2d1d2
2d1d2 d22 − d21

)
about u1 fixes l. If there are another reflection S ′ fixing l, then S ◦ S ′ would
be either a rotation or a translation and S ◦ S ′ fixes a line, so S = S ′. In other
words, such reflection is unique.

Finally, suppose that y ∈ Z2
q is distinct from x with the line l passing x and

y being good. Since p ≡ 3 mod 4, B(x, y) is always non-isotropic.

Lemma C.2. Let x, y ∈ Cρ(u) for elements x, y, u ∈ Z2
q and ρ ∈ Z∗

q . There is
a unique rotation R fixing u and sending x to y.

Proof. After applying a translation, we may assume u = 0. Then, we have
∥x∥ = ∥y∥ ∈ Z∗

q . Let x = (x1, x2) and y = (y1, y2). Solve a rotation matrix R
with

Rx = y ⇒
(
a −b
b a

)(
x1

x2

)
=

(
y1
y2

)
⇒
(
x1 −x2

x2 x1

)(
a
b

)
=

(
y1
y2

)
.

Since ∥x∥ ∈ Z∗
q , there is a unique solution (a, b). Additionally,

a2 + b2 =
1

ρ

(
(ax1 − bx2)

2
+ (bx1 + ax2)

2
)
=

1

ρ
(y21 + y22) = 1.

Thus, such a rotation exists. If there is another rotation R′ with the same
property, then the rotation R−1 ◦ R′ fixes x and u, so R = R′. That is, such
rotation is unique.

Lemma C.3. Suppose that x, y, z, w ∈ Z2
q such that (x, y) ̸= (z, w) and

∥x− y∥ = ∥z − w∥ ∈ Z∗
q .

If x−y ̸= z−w, then there is a unique rotation R with R(x) = z and R(y) = w.
If x− y = z − w, then there is no rotation R with R(x) = z and R(y) = w.

Proof. Divide it into two cases:

1. Assume x− y ̸= z − w. Let T be the translation by z − x. i.e. T (x) = z.
Note that

∥z − w∥ = ∥x− y∥ = ∥T (x)− T (y)∥ = ∥z − T (y)∥.

Thus, T (y) and w lie on a common circle with an invertible radius and
centered at z. By Lemma 4.2, there is a non-trivial rotation R with
R ◦ T (y) = w. Then, R′ = R ◦ T is the desired rotation. Additionally, if
there is another non-trivial rotation R′′ with R′′(x) = z and R′′(y) = w.

Then, R′−1 ◦ R′′ is a rotation fixes x, y. In other words, the rotation is
unique.
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2. Assume x − y = z − w. Similarly, let T be the translation by z − x. i.e.
T (x) = z and T (y) = w. Assume R is a rotation with R(x) = z and
R(y) = w. Then, R−1 ◦ T is a non-trivial rotation fixing x, y, which leads
to a contradiction.

Proof of Lemma 4.2.5. Let x = x1p
2 + x2p+ x3 with xi ∈ Fp. Notice that

x2 ≡ (2x1x3 + x2
2)p2 + 2x2x3p+ x3

2 mod q.

Divide it into five cases:

1. If
(
d
p

)
= 1, then there are two nonzero solutions to x3

2 ≡ d mod p. Next,
fixed x3, there is a unique solution for x2 to

2x2x3 +

⌊
x3

2

p

⌋
≡
⌊
d

p

⌋
mod p.

In the end, fixed x2, x3, there is also a unique solution for x1 to

2x1x3 + x2
2 +

⌊
2x2x3p+ x3

2

p2

⌋
≡
⌊
d

p2

⌋
mod p.

To sum up, there are two solutions to x2 ≡ d mod q.

2. If
(
d
p

)
= −1, then there is no solution to x3

2 ≡ d mod p and thus Q(d) =
0.

3. If p | d and p2 ∤ d, then note that

x2 ≡ 2x2x3p+ x3
2 ≡ d mod p2.

Since x3 = 0, d ≡ 0 mod p2. This results in a contradiction, so Q(d) = 0.

4. If p2 | d and
(d/p2

p

)
= 1, then solve x3

2 ≡ d mod p. We know that x3 = 0.
Also, solve

2x1x3 + x2
2 +

⌊
2x2x3p+ x3

2

p2

⌋
≡ d

p2
mod p

⇒ x2
2 ≡ d

p2
mod p

This has 2 solutions for x2; for both values, x1 can take arbitrary value in
Fp, so there are 2p solutions in total.

5. If p2 | d and
(d/p2

p

)
= −1, then consider

2x1x3 + x2
2 +

⌊
2x2x3p+ x3

2

p2

⌋
≡ d

p2
mod p

⇒ x2
2 ≡ d

p2
mod p

This has no solution for x2 in Fp.
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6. If d = 0, then consider

(2x1x3 + x2
2)p2 + 2x2x3p+ x3

2 ≡ 0 mod q.

Then, we have x3 = 0, x2 = 0, and x1 can be arbitrary elements in Fp, so
there are p solutions in total.

Proof of Lemma 4.2.6. Assume that the bisectorB : ax+by = c. After rescaling
and shifting, we may also assume that c = 0 and a2 + b2 = 1. Let S be the
reflection according to B. Then, we know that x = S(z) and y = B(w), so

∥x− y∥ = ∥S(z)− S(w)∥ = ∥S(z − w)∥ = ∥z − w∥.

Proof of Lemma 4.2.7. For a good line l, its parametric form is u+ t(1, a) with
t ∈ Zq and a ∈ Zq is a unit. Since there are p3−p2 units in Zq, there are p

3−p2

good lines. Additionally, since p ≡ 3 mod 4, there is no isotropic line.

Proof of Lemma 4.2.8. Divide it into three cases:

1. Suppose that ρ = 0. Consider the equation

x2 + y2 ≡ 0 where x, y ∈ Zq .

Let x = x1p
2 + x2p+ x3 and y = y1p

2 + y2p+ y3 with xi, yi ∈ Fp. Then,
we get x3 ≡ y3 ≡ 0, x2 ≡ y2 ≡ 0, and x1, y1 can be arbitrary elements in
Fp. Thus,

|C0(u)| = p2

2. Suppose that ρ = n1p
2 + n2p with ni ∈ Fp and at least one of them are

non-zero. Consider the equation

x2 + y2 ≡ ρ where x, y ∈ Zq .

Let x = x1p
2 + x2p+ x3 and y = y1p

2 + y2p+ y3 with xi, yi ∈ Fp. Then,
we get x3 ≡ y3 ≡ 0, and thus n2 must be 0. To sum up,

|Cρ(u)| =

{
p3 + p2 if n2 ≡ 0

0 if n2 ̸≡ 0.

3. Suppose that ρ = n1p
2 + n2p+ n3 with n3 ̸≡ 0. Consider the equation

x2 + y2 ≡ ρ where x, y ∈ Zq .

Let x = x1p
2 + x2p+ x3 and y = y1p

2 + y2p+ y3 with xi, yi ∈ Fp. Then,
there are p+ 1 pairs (x3, y3) satisfying

x3
2 + y3

2 ≡ n3 mod p;
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there are p pairs (x2, y2) satisfying

x2x3 + y2y3 +

⌊
x3

2 + y3
2

p

⌋
≡ n2 mod p

if the rest coefficients are fixed (and (x3, y3) ̸≡ (0, 0)); there are p pairs
(x1, y1) satisfying

2x1x3+2y1y3+x2
2+y2

2+

⌊
2x2x3p+ 2y2y3p+ x3

2 + y3
2

p2

⌋
≡ n1 mod p

if the rest coefficients are fixed (and (x3, y3) ̸≡ (0, 0)). To sum up,

|Cρ(u)| = p3 + p2.
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